
J .  Pluid M e &  (1968), vol. 32, part 4, pp. 681-692 

Printed in Great Britclin 

68 1 

Inclined buoyant puffs 

By J. M. RICHARDS 
Department of Electrical Engineering, Loughborough University of Technology 
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The motion of puffs which move in the direction of the buoyancy force was 
considered in a previous paper (Richards 1965). We now consider cases in which 
the directions of motion and of buoyancy are inclined or opposed. The main 
assumption is that the distributions of velocity inside the puffs are similar 
throughout the motion. Although this assumption is thought to be accurate 
only when the surroundings are neutral, we have reason to think that the same 
assumption may sometimes be used as an approximation to the internal dis- 
tribution of velocity in other types of environment. 

The particular case of mobion when the buoyancy force is constant is calculated 
in detail. The calculations are supported by observations from new laboratory 
experiments. 

1. Introduction 
A puff is an isolated mass of strongly turbulent fluid which moves bodily 

through less turbulent surroundings. The interior and exterior fluids mix easily, 
and in consequence the size of the puff increases. The ‘thermals’ studied by 
Scorer (1957) and others are puffs of a type in which both the mean fluid motion 
and the internal turbulence are entirely generated by buoyancy forces. Later, 
Richards (1965) showed that several features of non-buoyant puffs in unstrati- 
fied, non-turbulent, surroundings are apparently identical with the correspond- 
ing features of thermals. It was suggested that the only important effect of 
buoyancy in a puff is to change the impulse of the motion. The distributions of 
mean velocity and turbulence are substantially independent of buoyancy unless 
the densities of the interior and exterior fluids are very different. 

Distributions of the mean fluid velocity inside and outside typical puffs in 
neutral surroundings have been measured by Miss Woodward (1959) and by 
the present author (Richards 1963, 1965). These distributions were observed to 
remain approximately similar throughout a substantial part of the motion. When 
the surroundings contained a sharp change of density at  an interface between 
miscible fluids, Richards (1961) found that the gross motions of the puffs were 
not appreciably changed until the leading extremity of each puff reached the 
original level of the interface. Thus substantial changes in the distribution of 
external velocity can occur and yet affect the internal motions only slightly. 
The motions of puffs in neutral surroundings were also found to present many of 
the familiar features of vortex rings or vortex pairs (Lamb 1932). The mean 
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fluid motion and such characteristics of the turbulence as can be readily observed 
are roughly symmetrical about an axis (or plane). The force- and couple-resultants 
of the impulse of the vortex system then reduce to a single impulsive force 
along the line of symmetry in the direction of motion of the puff as a whole. The 
point a t  which the stream function is a maximum lies approximately on a 
maximum diameter of the puff normal t o  the line of symmetry, and so the inter- 
section of such a diameter with this line moves through the surroundings with 
the velocity of the vortex system. 

We here consider a more general type of motion, in which a buoyant or heavy 
puff may move at  some appreciable angle to the vertical. It will be convenient to 
discuss concurrently cases in which the mean fluid motion is roughly symmetrical 
about an axis (axial puffs), or else is two-dimensional in a vertical plane (cylin- 
drical puffs). We shall for brevity use a single symbol to represent, for example, the 
impulse I of an axial puff or the impulse per unit length I of a cylindrical puff, 
as appropriate. 

2. Inclined puffs in unstratified surroundings 
Figure 1 illustrates a puff which is moving a t  some angle, 8, to the horizontal. 

The main assumption of the present paper is that, in neutral surroundings, the 
distributions of mean and turbulent velocities in such a puff remain similar at all 

FIGURE 1. A puff, contained within the broken line, is subject to a buoyancy force parallel 
to  Oy, and the central point P moves along a trajectory indicated by the full curve. The 
arc length, s, is measured from the virtual origin 0 to P. 

stages of the motion. This assumption appears to be supported by the experi- 
mental results which will be presented later, and also by the observations which 
have been summarized in § 1 above. The point P in figure 1, which is the inter- 
section of the maximum diameter of the puff with the axis of symmetry of the 
mean motion, moves in the direction of the arrow. Let the speed of P be dsldt; 
we take ds/dt 2 0 without loss of generality. It has been explained, in $1, that 
the speed of P is approximately equal to the speed of the vortex system through 
its surroundings. 

As the magnitude and direction of the impulse I varies through the operation 
of the buoyancy force, P moves along a trajectory which may be determined as 
follows. 
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Let the maximum diameter of the puff (figure 1) be 2r. With the assumption 
of similarity, we have r = Is, 

where 1 is a positive constant which depends on the distributions of velocity. The 
point r = s = 0, is, of course, the virtual source of the puff. 

Choosing rectangular Cartesian co-ordinates in the plane of the motion, we 
take the origin at  the virtual source, with 0% parallel to the horizontal component 
of the initial impulse and O y  parallel to the initial direction of the buoyancy force. 
Resolving the impulse I into horizontal and vertical components, the momentum 
equations are, respectively, 

(a )  d ( l l l  COSO)/dt = 0, 

(b )  d ( [ I [  sinB)/dt = k IMg(, 

where g is the gravitational acceleration and M is the difference between the 
masses contained within, and displaced by the puff. Generally, 

M = M(t) .  (3) 

The sign on the right-hand side of ( 2 )  is positive whenever M has the same sign 
a t  the current time t and at the initial instant t = 0; otherwise the sign is negative. 
The negative sign may arise, for example, when the mixing of a volume of the 
fluid outside the puff with a volume of the internal fluid is accompanied by a 
change in the total volume. The mixing of ethanol and water may produce this 
result in liquids, and, in gases, such changes of volume follow, for example, the 
release or absorption of heat by condensation or evaporation of water droplets. 

From the assumptions of similarity and the Boussinesq approximation, the 
magnitude of the impulse is givea by 

( I (  = kpF(ds /d t ) ,  (4) 

where k is a positive constant, p is the mean density of the fluid, and a = 2 for 
a cylindrical puff or a = 3 for an axial puff. 

Equations (1)-(4), with initial conditions 

s = r = 0, /I] = lo, 6' = do, t = 0, ( 5 )  

allow one to calculate the trajectory of P when M is a given explicit or implicit 
function of time. An important example follows in tj 3. 

3. Puffs of constant total buoyancy: trajectories 
When Mg is constant, ( 2 )  may be integrated immediately, using the conditions 

(4), to give (u) I, = ( I (  cose = IoCOS0, 
( b )  Iy = III sin 0 = I, sin 0, + I Mgl t. 

It will be found helpful to recall that, if sin 0 is positive, the vertical component 
of the motion of P is in the direction of the buoyancy force. 

If Is + 0, we may divide ( 6 b )  by I, cos8, and use (6a) ,  obtaining 

tan0 = tan0,+(IMgl/I0cos8,)t. (7) 
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Since the case Mg = 0 has already been investigated (Richards 1965), we now 
take lMgl > 0. The cases in which I ,  = 0 will be considered later in the present 
section. 

From (7 )  we see that tan 0 may be used as a dimensionless measure of time 
unless I, = 0. So let 

We define a dimensionless length scale, S ,  by 

(8) 

Xa+l = s"+"lMgIkpP/(a+ 1)I& (9) 

S 2 0, dS/dt 2 0. (10) 

From (7)  and (8), d7/dt = I Mg I /Io cos 8,. (11) 

Frorn(Ga)and(8), 111 = 10c0s0,(1+T2)~. (12) 

tan 19 = 7, tan 8, = 7,. 

and since ds/dt 0, and from (5), (9), we take 

To find an independent expression for [ I /  we notice, from (1) and (4), that 

(a+ 1)lIl = kpPd(sa+l)/dt. 

That is, using (9) and ( l l ) ,  

2111 = Iosec19,d(S~+l)/d7. 

Prom (12) and (14), eliminating 111, 

(15) 
(a) d(Sa+l)/dT = 2 c0s2Oo(1 + 7  ) 4 
(b) with boundary condition X = 0 when 7 = 7,. 

The solution of (15), which is facilitated by the substitution 7 = sinh$, 
may be conveniently expressed in the form 

where 
and 

A graph of 7 against F is shown in figure 2 .  From (16), F (  -7) = -F(7 )  and 
so only the first quadrant of the graph is shown. Figure 2 also shows the relation 
between F and 6' implied by (16). 

Equations (8) and (16) define the trajectory of P, and (7) defines the position 
of P on the trajectory as a function of time. 

We next consider the various cases of vertical motion (Iz = O), returning to 
(6b) in the form 

The case I, = 0 has already been considered (Richards 1965); the result is 

I = (I0sin6,+JMglt)/sin8. (17) 

(a+ l)lMglt2/2kpP. (18) 

T = IMglt/I,. (19) 

&.U+l = 

When I, + 0 ,  it is convenient to define a dimensionless time scale, T, by 
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FIGURE 4. The trajectories of cylindrical puffs. This diagram may be 
compared with figure 3. 

Proceeding as before, equation (15a) must be replaced by 

d(Sa+l)/dT = 2(sin 8, + !.!')/sin 8. (20) 

This equation may be integrated immediately, with appropriate constraints, 
to give solutions 

Sa+l=T(2+T) for sinO=sinO,= + 1 , T > O ,  (21) 

Sa+l = T ( 2 - T )  for sin6 = sin6, = -1 ,0  6 T < 1, ( 2 2 )  

Sa+l = 1+(T-1)2 for s in@= - shoo  = +1,T > 1. (23) 

Figures 3 and 4 illustrate the expected trajectories of the puffs, according to 
the preceding theory. It can be seen that the motion when T < 1 is very much 
more rapid than when T is (0) 1. The greatest curvature always occurs when T is 
somewhat less than or equal to unity, that is to say when the increase of the 
vertical component of the impulse is roughly equal to the initial impulse. 
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4. Laboratory techniques 
Some of the foregoing results have been verified in the laboratory. The experi- 

ments were performed in a rectangular water tank 1-5 m deep, 0-75 m wide and 
2.lm long. The apparatus, or puffer, which was used to produce axial puffs, 
is illustrated in figure 5. It consisted of a thick rigid cylindrical tube, capped at 

I I A 

Entry ----f ’ 
I 

I 
Air f-) 

Outlet c-: 
1 I u 

FIGURE 5. An apparatus used to produce inclined axial puffs, showing the rectangular 
orifice and the rubber balloon, which is in the partly inflated condition ($4). 

one end by a thin disk having a rectangular orifice which was covered by a coarse 
wire mesh. A screwed plug closed the base of the puffer. The plug was penetrated 
by three small tubes which were connecbed by flexible rubber tubing, through 
the free surface of the water in the experimental tank, to the other apparatus 
in the laboratory. A supply of air at  a variable pressure was used to inflate and 
deflate a rubber balloon which was tied by its neck to the inner end of the central 
tube. One of the outer tubes was used to supply a mixture of solutions of a dye 
and of sodium chloride in water, the density of the mixture was 1*15g~m-~ .  
The remaining tube was used to convey liquid to waste. 

In operation, the puffer was first submerged and tilted t o  and fro in order to 
remove bubbles of air. The orifice disk was then attached to the open end by an 
internally threaded and flanged collar. The puffer was clamped at  the desired 
inclination and a t  about 20 cm below the free surface. The balloon was partly 
inflated, as shown in figure 5, where it will be seen that a body of fluid a t  the 
plugged end, or ‘base’, was then disconnected from the main body of water in 
the tank. 

The dyed mixture was then introduced through the plug, and an equal volume 
of fluid was removed to waste, until the base of the puffer contained substantially 
undiluted dyed mixture. 

When a puff was required, the supply and waste mixture pipes were closed 
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and the balloon was rapidly deflated. A quantity of water rushed in through the 
orifice and mixed with the fluid from the base of the puffer. As soon as dyed liquid 
was seen to emerge from the orifice, the balloon was suddenly and fully inflated, 
and so a cloud of dense dyed liquid was forced into the tank. Due to the rectangu- 
lar shape of the orifice, an axial puff developed. A vortex ring would have been 
expected if the orifice had been roughly circular (Richards 1965). 

The motion of the puff was recorded on cine film, using a shadowgraph tech- 
nique. The readings of a clock, which registered to 0.01 sec, were recorded on the 
same film. A sequence of enlargements from the film of a particular experiment 
is shown in figure 6, plate 1. It was found that the axial puff was always followed 
by a considerable mass of dyed fluid in bhe form of a tail or wake, and this tail 
must sometimes have contained significant fractions of the mass and momentum 
ejected by the puffer. Although subsidiary puff motions often developed in the 
tail, bhe motion of the main puff appeared to be almost independent of the motion 
developed by the tail if the angle of projection, O,, was greater than about - 20". 
This independence is not surprising when we recall Woodward's (1959) results, 
which show that the speed of the fluid motion surrounding an isolated axial puff 
decreases rapidly with distance from the centre of the puff. In  order to avoid 
appreciable interference by the tail and yet to produce trajectories which display 
substantial variation of i9 during the course of an experiment, the main experi- 
ments were conducted with the axis of the puffer near the horizontal. 

Besides these experiments with axial puffs, some observations were made of 
cylindrical puffs which were projected almost directly against the buoyancy 
force. The apparatus in these cases was the cylindrical puffer previously described 
(Richards 1965), which was now set at an angle of about 10" to the vertical (i.e. 
8, + - 80'). This puffer was filled with a dyed buoyant mass of a dilute solution 
of ethyl alcohol in water. Unfortunately, the method requires that the free surface 
of the water in the tank is fairly close to the level of the puffer orifice, and con- 
sequently the observations could not be continued far beyond the culminating 
point of each trajectory. 

5. Experimental results 
The cine film of each experiment was projected frame by frame and silhouettes 

of the puff were traced on to a single sheet of paper. Two fiducial marks on the 
front wall of the tank were used to ensure the same registration and enlargement 
throughout, so that the traced silhouettes depicted successive stages in the motion 
relative to the laboratory. The reading of the clock corresponding to each sil- 
houette was also taken, this time will be denoted by ( t  - t l ) .  A transparent rule 
was used to estimate the centre of each silhouette, the locus of this centre is the 

FIGURE 6 (opposite). A sequence from cine film, showing successive stages in the motion 
of a dense axial puff, made visible in water with a black dye and a shadowgraph. Each 
photograph appears with the corresponding number of cine frames since the puff began 
to emerge from thc puffer. Filming speed 18 frames per second. The free surface appears 
as a dark line near the top of each photograph; the small black fixed marks were 30 cm 
apart. The photographs show only the upper central portion of the large experimental tank. 
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trajectory of the point P of figure 1. Typical silhouettes, with loci, are shown in 
figure 7. 

Corresponding values of the diameter 2r, and of the arc length along the esti- 
mated trajectory of P from some arbitrary fixed origin, which we shall denote by 

0 -  

1 -  

S 

-30 cm- 

(a )  (b )  

FIGURE 7 .  The silhouettes of puffs, traced from enlargements of cine photographs. An 
estimate of the trajectory of the central point P (figure 1) is superimposed, and the esti- 
mated position of the virtual origin is indicated by 0. (a)  shows an axial puff, ( b )  a cylin- 
drical puff. 
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FIGURE 8. Typical graphs of the arc displacement, (8 - sl), against the diameter, 
2r, for (a )  an axial puff and ( b )  a cylindrical puff. 

(s-sl), were measured from each silhouette. The measuring wheel of a plani- 
meter was particularly convenient for the latter measurement, which was taken 
round a curve. Graphs of (s-sl) against 2r, such as those shown in figure 8, 
indicate that the value of 1, equation (l) ,  is roughly constant throughout each 
motion, in agreement with the assumption made. The value of s1 was measured 
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from the intercept on the graph, and thence the virtual origin of the motion was 
marked on the estimated trajectory. 

The values of I obtained obtained in these experiments, as well as the shapes of 
the puff silhouettes (so far as these could be clearly distinguished from their 
tails) are consistent with those obtained in earlier work. 
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FIGURE 9. These graphs relate to an axial puff. (a)  A typical graph of slope, 7, against 
indicated time, ( 6 - t , ) ,  verifying (7) .  ( b )  A typical graph of 84 against H ,  verifying ( 1 6 ~ ) .  

'* T lo' 

- 50 0 50 

F 
FIGURE 10. A typical graph of s3 against F ,  for a cylindrical puff, verifying (16a). 

Figure 9 (a)  shows a graph of 7 against the time (t  - tJ ,  in the case of an axial 
puff. Each value of 7 = tan8 was obtained by measuring 8 on the estimated 
trajectory of a silhouette diagram like figure 7(a) .  Figure 9(a )  shows that T 

varies linearly with t ,  in agreement with equation (7). 
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The measured values of r were used to calculate corresponding values of P, 
equation (16b) .  We see from equations ( 1 6 a )  and ( 9 )  that safl should be directly 
proportional to (P -Po), and this result was verified by graphs of s4 against P, such 
as figure 9 (b).  The intercept on the axis of P gave an estimate of Fo, which was used 
to calculate ro, and so O0, using (16 )  and (8). Such calculations have been used to 
revise an initial estimate of the trajectory in figure 7 ( a ) .  It was observed that 
the axial puffer often projected puffs at an appreciable angle to its axis; perhaps 
this effect was associated with unwanted variations in the operation of the rubber 
balloon. 

Since the experiments with cylindrical puffs were always associated with 
values of Oo close to - 80 degrees, only a few values of r could be measured accu- 
rately, and so (7) could not be verified directly in the manner of figure 9(a ) .  
Accordingly, (7 )  was assumed, and only the initial value T~ was measured from 
the trajectory. The constant of proportionality in ( 7 )  is equal to the ratio of ro 
to the interval of time between t = 0 and the instant when the trajectory becomes 
horizontal. This interval was estimated directly, though approximately, from 
the cine film. The initial clock reading, - t,, was estimated in the same way. The 
observed values of (t - tl) were then converted, using (7), into corresponding 
values of T. The procedure was then completely analogous to that used for axial 
puffs and described in the preceding paragraph. As shown in figure 10, the 
resulting graph of s3 against P is roughly linear, in agreement with ( 1 6 a )  and ( 9 ) .  

6. Suggestions and conclusions 
A self-preserving turbulent flow, such as has been assumed in the present paper, 

can only be expected when the Reynolds number R = (rds/dt)  /u ,  exceeds some 
critical value. If the motion on some part of a trajectory (figures 3,4) causes the 
value of R to become less than this, the motion may be expected to change, 
though perhaps only gradually, towards some less turbulent form such as a 
vortex ring or vortex pair. Later, the continued action of the buoyancy force 
may cause R to increase until puff motion is resumed. This second critical value 
of R may be greater than the first, and the critical values may depend on other 
properties of the motions, such as the circulation. The detailed examination 
of these suggestions is beyond the scope of the present paper. 

The experimental results of $ 7 agree closely with the corresponding theoretical 
predictions, and so provide considerable support for the assumptions made in 
$ 2 .  The same assumptions can accordingly be expected to be generally useful 
whenever the Reynolds number R remains sufficiently large. 

I wish to thank Mr J. Rippon and Miss W. Foley (now Mrs Bo) for their assist- 
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Meteorological Office. 
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